Experiences with zinc(II) containing artificial metalloproteins and metalloenzymes

Béla Gyurcsik

A biologist can do:

- Beautiful synthetic reactions: e.g. protein synthesis
 - Efficient catalysis: even of the thermodynamically unfavoured reactions – coupling of the reactions by the catalyst
- Extraordinary selectivity: better than the best chemical separation methods.

-

A chemist can do:

Capillary electrophoresis for DNA sequencing

A biologist can do:

Separation of the two large DNA molecules (Same size: ~5000 bp)

Bioinorganic Chemistry

The role of the metal ions

Pdb id: 1ED9

Pdb id: 1ED8

The role of the metal ions

Jakab et al., Dalton Trans., 6987-6995 (2008).

Models vs. Native biomolecules

Bioinorganic zinc chemistry

http://www2.sci.u-szeged.hu/artmetprot/index_eng.htm

DNA containing mutated sequence

Add cleavage reagent and corrected DNA template

A. Pingoud, G.H. Silva: Precision genome surgery; Nature Biotechnol., 25 (2007) 743.

DNA containing mutated sequence

Add cleavage reagent and corrected DNA template

A. Pingoud, G.H. Silva: Precision genome surgery; Nature Biotechnol., 25 (2007) 743.

A guide to genome engineering with programmable nucleases

Table 2 | Comparison of three classes of programmable nucleases*

	ZFNs	TALENs	RGENs
DNA targeting specificity determinant	Zinc-finger proteins	Transcription activator-like effectors	crRNA or sgRNA
Nuclease	Fokl	Fokl	Cas9
Success rate [‡]	Low (~24%)	High (>99%)	High (~90%)
Average mutation rate [§]	Low or variable (~10%)	High (~20%)	High (~20%)
Specificity-determining length of target site	18-36 bp	30–40 bp	22 bp (total length 23 bp)
Restriction in target site	G-rich	Start with T and end with A (owing to the heterodimer structure)	End with an NGG or NAG (lower activity) sequence (that is, PAM)
Design density	One per ~100 bp	At least one per base pair	One per 8 bp (NGG PAM) or 4 bp (NGG and NAG PAM)
Off-target effects	High	Low	Variable
Cytotoxicity	Variable to high	Low	Low
Size	~1kb×2	~3 kb×2	4.2 kb (Cas9 from Streptococcus pyogenes) + 0.1 kb (sgRNA)

NATURE REVIEWS GENETICS

VOLUME 15 MAY 2014 321

Aim of the work

To develop an artificial nuclease with a safe control mechanism:

The nuclease has to stop cleaving DNA in case of any damage of the enzyme within the cells.

Crystal structure of an NColE7 mutant in its DNA complex

Y.-T. Wang, J.D. Wright, L.G. Doudeva, H.-C. Jhang, C. Lim, H.S. Yuan, J. Am. Chem. Soc. 131 (2009) 17345-17353; Protein Data Bank (PDB) ID: 3FBD

NColE7

1. Interaction between the N- and C-termini

2. Fine tuning of the nuclease activity

3. W464: stabilization of the structure of NCoIE7

4. Inducible preorganized zinc(II)-binding site

1. Interactions between the N- and C-termini

Gyurcsik, et al., J. Biol. Inorg. Chem., 18, 309-321 (2013); Acta Cryst. Sect F., 69 (2013) 551-554; Metallomics, 6 (2014) 2090-2099.

2. Fine tuning of the nuclease activity

Gyurcsik, et al.: Protein Sci., 23, 1113–1122 (2014)

3. W464: stabilization of the structure of NCoIE7

<u>K R N K P G K A T G K G K P V N N KWLNNAG K DLG S P V P D RIAN KLRD K E F</u> K S F D D F R K K F W E E V S K D P E L S K Q F S R N N N D R M K V G K A P K T R T Q D V S G K R T S F E L <u>H H</u> E K P I S Q N G G V Y D M D N I S V V T P K R <u>H</u> I D I <u>H</u> R G K

Gyurcsik, et al., J. Biol. Inorg. Chem., 19 (2014) 1295-1303; Gyurcsik, Curr. Prot. Pept. Sci., 17 (2016) 191-197; Gyurcsik, et al., J. Inorg. Biochem. 151 (2015) 143-149; Protein Sci., 25 (2016) 1977-1988.

SRCD spectroscopy

4. Inducible preorganized zinc(II)-binding site

Inducible preorganized metal ion binding site

Isothermal Titration Microcalorimetry Zn(II) binding

	K _{d (Prot+Im7)}	K _{d (Prot)}
NCoIE7	61 ± 18 nM	9.6 ± 3.2 nM
TKW	33 ± 23 nM 🔶	11 ± 1 μΜ
W	55 ± 25 nM 🗲	5.6 ± 0.3 μΜ
lm7	ND	

The concept of the NCoIE7-based artificial nuclease design

Split NCoIE7 into Nx regulatory and Cy catalytic segments and insert a zinc finger guide protein between them.

N-terminal control unit of
NColE7LinkerZinc Finger proteinLinkerC terminal catalytic unit
of NColE7

Protein design

Strategy:

Nx - ZF - Cy

NCoIE7

Zinc finger

Gyurcsik, et al., J. Comp-Aid. Mol. Des., 28 (2014) 841-850.

Protein expression and purification

Protein expression and purification

Catalytic activity - specificity

Catalytic activity - specificity

Allosteric control

Cellular localization on in HEK293T cells

N4-ZF-C105

Conclusions

- The formation of native-like structure of the artificial nucleases can be monitored through their zinc-binding ability.

- The Nx – ZF – Cy models showed low activity, they were specific, but not well regulated.

- The possibility of fine tuning and structure induction in combination with competition by the DNA binding proteins will lead us to a better artificial enzyme.

Acknowledgement

This work was financially supported by the research grants

NKFIH K_16/120130 and

GINOP 2.3.2-15-2016-00038.

MOMENTUM OF INNOVATION

